Заменимые и незаменимые аминокислоты. Идеальный белок. Аминокислотный скор. Физиологические свойства незаменимых аминокислот. Незаменимые аминокислоты. Аминокислотный скор Вопросы для более глубокого изучения дисциплины

Мало кто знает и понимает, что такое аминокислотный скор. А между тем, данные аминокислотного скора очень важны для тех людей, которые временно или постоянно испытывают в рационе питания дефицит белков животного происхождения. И которые из-за этого испытывают трудности не только с обновлением мышечных структур организма, но и почти лишают свой организм возможности полноценного строительства белковых структур.

Что такое аминокислотный скор

Аминокислотный скор - это показатель полноценности белка, который представляет собой процентное отношение определенной незаменимой аминокислоты в конкретном продукте к схожей аминокислоте в искусственном идеальном белке.
В английском языке слово «score» (скор) означает счет. В случае аминокислотного скора - это счет, полученный путем деления количества выбранной незаменимой аминокислоты в каком-то продукте на количество такой же аминокислоты в идеальном белке. Полученную цифру затем умножают на 100.
Хорошо, если аминокислотный скор любой аминокислоты в конкретном продукте равен или больше 100. В этом случае продукт признается полноценным продуктом в отношении белка и может быть рекомендован к самостоятельному употреблению в пищу.
В случае если какая-то из аминокислот в конкретном продукте показывает аминокислотный скор меньше 100, то эта аминокислота признается т.н. лимитирующей.

Лимитирующие аминокислоты

Присутствие лимитирующих аминокислот в конкретном продукте не позволяет назвать этот продукт полноценным. Белок таких продуктов признается неполноценным, что влечет за собой определенный трудности для синтеза белковых структур организма.
Никаких трудностей не возникает, если один продукт с лимитирующими незаменимыми аминокислотами дополняется другим продуктом, в котором данной аминокислоты достаточно.
Возможна даже комбинация продуктов, в каждом из которых какая-то одна незаменимая аминокислота является лимитирующей, а в другом (других) продуктах - другая. Таким образом они дополняют друг друга.
Пример: употребление совместно в рационе питания бобовых (чечевица, фасоль, горох), у которых лимитирующей аминокислотой является метионин, и зерновых (гречка, пшеница, рис) с лимитирующей аминокислотой лизином.
Однако в том случае, если в пищу употребляются продукты со схожими лимитирующими аминокислотами, то это означает полное лишение организма необходимого для строительства структур тела компонента.
Ведь идеальный белок называется так потому, что в нем сконструировано необходимое для организма количество той или иной незаменимой аминокислоты. Если какая-то аминокислота поступает в организм в недостаточном количестве, то это лишает организм возможности полноценного обновления структур.
При употреблении в пищу животного белка никаких проблем с лимитирующими аминокислотами не возникает. Проблемы возникают лишь в случае перехода только на растительную пищу.

Итак, с позиции аминокислотного скора следует помнить следующее: бобовые продукты (соя, фасоль - исключения) имеют лимитирующую незаменимую аминокислоту метионин.

Злаковые продукты имеют лимитирующую незаменимую аминокислоту лизин.

Комбинация злаковых и бобовых дает возможность получить полноценный белок, содержащий все необходимые для организма незаменимые аминокислоты.

  • полноценные и неполноценные;
  • животного и растительного происхождения.
  • Углеводы:
    • простые сахара;
    • полисахариды.
  • Жиры:
    • животного и растительного происхождения;
    • жироподобные вещества.
  • Витамины:
    • водорастворимые,
    • жирорастворимые.
  • Минеральные вещества:
    • макроэлементы;
    • микроэлементы.

    Непищевые компоненты представлены:

    1. Балластными соединениями:
    • целлюлоза;
    • гемицеллюлоза;
    • пектин.
  • Защитными компонентами.
  • Вкусовыми и ароматическими веществами.
  • Компонентами пищи, неблагоприятно влияющими на организм человека.
  • Особое место в этом списке занимает вода. Нутриенты выполняют в организме ряд функций.

    1. Пластическая функция . Составляющие элементы пищи идут на построение тканей и органов нашего тела. Состав клеток тела практически полностью обновляется за девять месяцев. Атомы, еще вчера входившие в состав тела, переходят в окружающую природу, а атомы окружающей природы поступают внутрь организма.

    2. Энергетическая функция . Преобразование пищи в организме сопровождается выделением энергии, которая рассеивается в виде тепла и аккумулируется в виде АТФ (аденозинтрифосфорной кислоты) - универсального энергоносителя, участвующего во всех физиологических процессах. Одна молекула АТФ аккумулирует 67-83,8 кДж энергии.

    3. Информационная функция . С пищей в организм поступает химическая и энергетическая информация об окружающей действительности, что позволяет ему реагировать на ее изменения. Таким образом, человек информационно связан с неорганическим миром и другими живыми организмами.

    4. Регуляторная функция . Многие составляющие пищи могут оказывать влияние на деятельность отдельных органов, тканей, водно-солевой и энергетический обмен, скорость нервных процессов и другие физиологические функции организма.

    Непищевые компоненты, кроме веществ неблагоприятно влияющих на здоровье, не обладая энергетической и пластической ценностью, играют важную роль в процессе пищеварения.

    ***************************************________________

    Аминокислоты представляют собой структурные химические единицы, образующие белки. Аминокислоты на 16% состоят из азота, это является основным химическим отличием от двух других важнейших элементов питания - углеводов и жиров. Важность аминокислот для организма определяется той огромной ролью, которую играют белки во всех процессах жизнедеятельности.

    Дефицит белков в организме может привести к нарушению водного баланса, что вызывает отеки. Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания.



    Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма, некоторые из них выполняют роль нейромедиаторов (нейротрансмиттеров) или являются их предшественниками.

    Нейромедиаторы - это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга. Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции. Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.

    Существует около 28 аминокислот. В организме человека многие из них синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей.

    К таким незаменимым аминокислотам относятся:

    • валин
    • гистидин
    • изолейцин
    • лейцин
    • лизин
    • метионин
    • треонин
    • триптофан
    • фенилаланин

    Валин необходим для восстановления поврежденных тканей и метаболических процессов в мышцах при тяжелых нагрузках и для поддержания нормального обмена азота в организме, оказывает стимулирующее действие. Относится к разветвленным аминокислотам, может быть использован мышцами в качестве источника энергии вместе с лейцином и изолейцином.

    Гистидин - это незаменимая аминокислота, способствующая росту и восстановлению тканей. Гистидин входит в состав миелиновых оболочек, защищающих нервные клетки, а также необходим для образования красных и белых клеток крови. Гистидин защищает организм от повреждающего действия радиации, способствует выведению тяжелых металлов из организма и помогает при СПИДе.

    Изолейцин - одна из незаменимых аминокислот, необходимых для синтеза гемоглобина. Также стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения. Метаболизм изолейцина происходит в мышечной ткани. Изолейцин - одна из трех разветвленных аминокислот. Эти аминокислоты очень нужны спортсменам, так как они увеличивают выносливость и способствуют восстановлению мышечной ткани. Изолейцин необходим при многих психических заболеваниях. Дефицит этой аминокислоты приводит к возникновению симптомов, сходных с гипогликемией.

    К пищевым источниками изолейцина относятся: миндаль, кешью, куриное мясо, турецкий горох, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки.

    Лейцин - незаменимая аминокислота, относящаяся к трем разветвленным аминокислотам. Действуя вместе, они защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц, поэтому их прием часто рекомендуют в восстановительный период после травм и операций. Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста.К пищевым источникам лейцина относятся: бурый рис, бобы, мясо, орехи, соевая и пшеничная мука.

    Лизин - это незаменимая аминокислота, входящая в состав практически любых белков. Он необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых. Лизин участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Его применяют в восстановительный период после операций и спортивных травм. Лизин также понижает уровень тритицеридов в сыворотке крови Эта аминокислота оказывает противовирусное действие, особенно в отношении вирусов, вызывающих герпес и острые респираторные инфекции.Дефицит этой незаменимой аминокислоты может привести к анемии, кровоизлияниям в глазное яболко, ферментным нарушениям, раздражительности, усталости и слабости, плохому аппетиту, замедлению роста и снижению массы тела, а также к нарушениям репродуктивной системы.

    Пищевыми источниками лизина являются: сыр, яйца, рыба, молоко, картофель, красное мясо, соевые и дрожжевые продукты.

    Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая их отложение в печени и в стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Эта аминокислота способствует пищеварению, обеспечивает дезинтоксикационные процессы (прежде всего обезвреживание токсичных металлов), уменьшает мышечную слабость, защищает от воздействия радиации, полезна при остеопорозе и химической аллергии. Метионин оказывает выраженное антиоксидантнеє действие, так как является хорошим источником серы, инактивирующей свободные радикалы. Метионин применяют при синдроме Жильбера, нарушениях функции печени. Он также необходим для синтеза нуклеиновых кислот, коллагена и многих других белков. Его полезно принимать женщинам, получающим оральные гормональные контрацептивы. Метионин понижает уровень гистамина в организме, что может быть полезно при шизофрении, когда количество гистамина повышено. Метионин в организме переходит в цистеин, который является предшественником гпютатиона. Это очень важно при отравлениях, когда требуется большое количество гпютатиона для обезвреживания токсинов и защиты печени.

    Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена и йогурт.

    Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме. Она важна для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров в комбинации с аспартовой кислотой и метионином. Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложеннию жиров в печени. Эта аминокислота стимулирует иммунитет, так как способствует продукции антител. Треонин очень в незначительных количествах содержится в зернах, поэтому у вегетарианцев чаще возникает дефицит этой аминокислоты.

    Триптофан - это незаменимая аминокислота, необходимая для продукции ниацина. Он используется для синтеза в головном мозге серотонина, одного из важнейших нейромедиаторов. Триптофан применяют при бессоннице, депрессии и для стабилизации настроения. Он помогает при синдроме гиперактивности у детей, используется при заболеваниях сердца, для контроля за массой тела, уменьшения аппетита, а также для увеличения выброса гормона роста. Помогает при мигренозных приступах, способствует уменьшению вредного воздействия никотина. Дефицит триптофана и магния может усиливать спазмы коронарных артерий. К наиболее богатым пищевым источникам гриптофана относятся: бурый рис, деревенский сыр, мясо, арахис и соевый белок.

    Фенилаланин - это незаменимая аминокислота. В организме она может превращаться в другую аминокислоту - тирозин, которая, в свою очередь, используется в синтезе основного нейромедиатора: допамина. Поэтому эта аминокислота влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Фенилапанин используют в лечении артрита, депрессии, болей при менструации, мигрени, ожирения, болезни Паркинсона и шизофрении.

    Скор аминокислотный - показатель биологической ценности белка, представляющий собой процентное отношение доли определенной незаменимой аминокислоты в общем содержании таких аминокислот в исследуемом белке к стандартному (рекомендуемому) значению этой доли.

    Качество пищевого белка может оцениваться путем сравнении его аминокислотного состава с аминокислотным составом стандартного или «идеального» белка. Понятие «идеальный» белок включает представление о гипотетическом белке высокой пищевой ценности, удовлетворяющем потребность организма человека в незаменимых аминокислотах. Для взрослого человека в качестве «идеального» белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ. Аминокислотная шкала показывает содержание каждой из незаменимых аминокислот в 100 г стандартного белка.

    Расчет аминокислотного скора для определения биологической ценности исследуемого белка проводят следующим образом. Аминокислотный скор каждой незаменимой аминокислоты в «идеальном» белке принимают за 100%, а в исследуемом - определяют процент соответствия:

    В результате определяют аминокислоту со скором менее 100%, которую называют лимитирующей аминокислотой исследуемого белка. В белках с низкой биологической ценностью лимитирующих аминокислот со скором менее 100% может быть несколько.

    Наиболее близки к «идеальному» белку животные белки мяса, яиц и молока. Большинство растительных белков содержат недостаточное количество одной или нескольких незаменимых аминокислот. Например, белки злаковых культур, а также полученные из них продукты неполноценны (лимитированы) по лизину и треонину. Белки ряда бобовых культур лимитированы по метионину и цистеину (60-70% оптимального количества).

    В процессе тепловой обработки или длительного хранения продуктов из некоторых аминокислот могут образоваться не усвояемые организмом соединения, т.е. аминокислоты становятся «недоступными». Это снижает ценность белка.

    Пищевая ценность белков может быть улучшена (т.е. увеличена биологическая ценность или аминокислотный скор по лимитирующим кислотам) путем добавления лимитирующей аминокислоты или внесения компонента с ее повышенным содержанием, или путем смешивания белков с различными лимитирующими аминокислотами. Так, биологическая ценность белка пшеницы может быть повышена добавлением 0,3-0,4% лизина, белка кукурузы - 0,4% личина и 0,7% триптофана. Приготовление смешанных блюд, содержащих животные и растительные продукты, способствует получению полноценных пищевых белковых композиций.

    __________________________********************************8

    Аминокислотный скор (от англ. «score» — счет) – важнейший показатель полноценности белка, про который очень мало кто знает. Между тем общие знания аминокислотного скора просто необходимы вегетарианцам и людям, соблюдающим длительные посты или воздержания от пищи животного происхождения.
    Аминокислотный скор продуктов растительного происхождения серьезно отличается от продуктов животного происхождения тем, что почти во всех растительных продуктах та или иная незаменимая аминокислота (та, которая попадает в организм только с пищей) является т.н. лимитирующей. А это означает невозможность для организма полноценно строить различные структуры из аминокислот.
    Но обо всем по порядку.

    Что такое аминокислотный скор

    Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в искусственном идеальном белке. (Идеальный белок представляет собой такое соотношение незаменимых аминокислот, которое позволяет организму без проблем обновлять те или иные внутренние структуры.)
    Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

    Лимитирующие аминокислоты

    Если после произведения вычислений полученные по каждой незаменимой аминокислоте цифры больше или равны 100, то белок продукта признается полноценным. Т.е. таким, который может самостоятельно обеспечить организм всем необходимым соотношением незаменимых аминокислот (количество белка – это уже другой вопрос, выходящий за рамки статьи).
    В случае же, если какая-то (обычно одна) незаменимая аминокислота в продукте имеет аминокислотный скор меньше 100, то такая аминокислота признается лимитирующей, а сам белок продукта – неполноценным.
    Наличие в продукте лимитирующей незаменимой аминокислоты означает то, что такой продукт нельзя употреблять в пищу без комбинирования его с другими продуктами, имеющими достаточное количество данной проблемной аминокислоты.
    Например, почти все бобовые (соя, фасоль – исключение) имеют лимитирующую аминокислоту метионин. Следовательно, необходимо дополнить рацион питания либо белковыми продуктами животного происхождения, либо теми растительными продуктами, в которых метионина достаточно.
    Еще один пример – злаковые, которые имеют лимитирующую аминокислоту лизин. Их, как раз, можно дополнить бобовыми. Тогда, получая лизин из бобовых и метионин из злаковых, организм не будет испытывать проблем с построением белковых и кровяных структур.

    Таблица аминокислотного скора

    Нет никакой необходимость запоминать всю таблицу аминокислотного скора растительных продуктов (животные продукты, как уже писалось, не имеют лимитирующих незаменимых аминокислот, и их аминокислотный скор практически не важен). Достаточно лишь запомнить, что почти все бобовые испытывают проблемы с метионином, а злаковые – с лизином. Комбинация тех или иных злаковых и бобовых продуктов позволить не только устранить эту проблему, но и решит проблему с количеством белка в рационе питания. Ведь бобовые содержат больше белка, чем мясные продукты. Правда, усвояемость бобовых далека от усвояемости других белковых продуктов.

    Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. Незаменимые аминокислоты не синтезируются в организме человека и должны поступать с суточным рационом. Продовольственная организация ООН «ФАО» предложила аминокислотную шкалу некого идеального белка, полностью сбалансированного. С этой шкалой и сравнивают исследуемый белок. Аминокислотный скор - это показатель биологической ценности белка, представляющий собой процентное отношение доли определенной незаменимой аминокислоты в общем содержании таких аминокислот в исследуемом белке к стандартному (рекомендуемому) значению этой доли. Лимитирующий аминокислотой при оценке биологической ценности белка считается та аминокислота, скор которой имеет наименьшее значение.

    Азотный баланс. Суточная потребность человека в белках.

    Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. Для оценки белкового обмена ведено понятие азотного баланса. В зрелом возрасте у здорового человека наблюдается азотный баланс, т.е. количество азота равно количеству азота выводимого с продуктами распада. В молодом растущем организме идет положительный баланс. У пожилых и при заболеваниях, при недостатке белков наблюдается отрицательный баланс. Суточная потребность взрослого человека составляет 1-1,5 грамма белка на 1 кг массы тела, но не более 85-100 грамм. Доля животных белков должна составлять 55% от общего количества в рационе.

    Распад белка в желудке.

    Пищеварение в желудке происходит в течение нескольких часов. Чистый желудочный сок представляет собой прозрачный жидкий сок содержит НСl. Протеазами желудочного сока являются: пепсин, гастриксин, желатиназа. В процессе переваривания пищи большую роль играет НСl. Нсl создает такую концентрацию ионов водорода в желудке, при которой пепсин и гастриксин наиболее активны. Установлено, что секреция желудочного сока зависит от питания. При длительном употребление углеводной пищи, секреция желудочного сока снижается, повышается при белковой пищи. Это касается как обмена желудочного сока, так и его кислот. Обычно пища находится в желудке 6-8 часов



    Распад белка в тонком кишечнике.

    Содержимое желудка переходит в кишечник. В 12-перстной кишке пища подвергается действию поджелудочного сока, желчи. Поджелудочном соке имеются ферменты расщепляющие белки и полипептиды: трипсин, эластаза, химотрипсин, карбоксипептидазы. Трипсин, химотрипсин расщепляют как сами белки, так и продукты их распада, полипептиды. При этом образуются низкомолекулярные пептиды. Карбоксипептидазы катализируют отщеплении от молекул полипептидов аминокислот. При богатой белками мясной диете увеличивается активность пептидов. Кишечный сок содержит энтеропептидаза, которая является ферментом активатором. Это смесь пептидаз в которую входят аминопептидазы, карбоксипептидазы и другие.

    Основные пути метаболизма.

    Существует 5 путей метаболизма:

    1 путь - транспорт в другие ткани. Аминокислоты из печени могут поступать в систему кровообращения, а также использоваться в качестве структурных блоков для биосинтеза тканей белков.

    2 путь - биосинтез белков печени и плазмы крови. Белки печени подвергаются постоянному обновлению, причем для них характерна очень высокая скорость оборота. Именно в печени синтезируются большинство белков плазмы крови.

    3 путь - дезаминирование и распад. Аминокислоты, которые небыли использованы в печени подвергаются дезаминированию и распадаются с образованием ацетил-СоА. Ацетил-СоА либо подвергается окислению в цикле лимонной кислоты, либо превращается в липиды.

    4 путь - цикл глюкоза аланин. Печень участвует в метаболизме, поступающих из периферических тканей. После приема пищи из мышц в печень поступает аланин. Глюкоза возвращается в скелетные мышцы, для восполнения в них запаса гликогена. Одна из функций циклического обмена состоит в том, что он смягчает колебания уровня глюкозы, в период между приемом пищи.

    5 путь - превращение в нуклеотиды и другие продукты. Аминокислоты служат предшественниками в биосинтезе нуклеотидов, а также синтезе других веществ.

    Технологические свойства белков.

    Наиболее важным свойством является гидратация, пенообразование и денатурация. Имеющиеся в составе белков и молекул гидрофильные и карбоксильные группы притягивают к себе молекулы воды, строго ориентируя их на поверхности. Гидратная оболочка препятствует агрегации и способствует устойчивости раствора. Подвижным студнем является цитоплазма. Денатурация - это сложный процесс при котором под влиянием внешних факторов происходит изменения пространственной структуры глобулы. Денатурация происходит под действием физических факторов и химических факторов. В ходе денатурации 1-ая структура не меняется, белок в состояние денатурации обладает пониженной растворимостью и теряет биологическую активность. В ходе переваривания белков, усвояемость белков в состояние денатурации будет выше. Пенообразование, белки способны образовывать высококонцентрированные системы «жидкость – газ», которые называются пенами. Устойчивость зависит от рода белка, его температуры и концентрации. Белки как пенообразователи используют в кондитерской продукции и пивоварение.

    Пищевая аллергия.

    Пищевая аллергия – это любая аллергическая реакция на нормальную безвредную пищу или пищевые ингредиенты. Какой-либо один вид еды может содержать множество пищевых аллергенов. Как правило, это белки и гораздо реже - жиры и углеводы. При аллергии иммунная система вырабатывает антитела в количестве, превышающем норму, делая тем самым организм настолько реактивным, что он воспринимает безвредный белок так, как если бы это был инфекционный агент. Если иммунная система не вовлечена в процесс, то это не пищевая аллергия, а непереносимость пищи.
    Истинная пищевая аллергия встречается редко (менее чем у двух процентов населения). Чаще всего причиной ее является наследственность. У детей аллергия обычно проявляется в первые годы жизни (часто к яичным белкам), а затем они «перерастают» ее. Среди взрослых, полагающих, что у них есть пищевая аллергия, примерно 80% на самом деле испытывают состояние, которое эксперты окрестили «пищевой псевдоаллергией». Хотя симптомы, которые наблюдаются у них, подобны тем, что бывают при истинной пищевой аллергии, причина может крыться в простой непереносимости пищи. Более того, у некоторых людей могут развиться психосоматические реакции на еду потому, что они считают, что она является для них аллергеном.

    Биологическая ценность белков определяется сбалансированностью аминокислотного состава и атакуемостью белков ферментами пищеварительного тракта.

    В организме человека синтезируется только часть аминокислот (заменимые), другие должны доставляться с пищей (незаменимые). Заменимые аминокислоты способны заменять одна другую в рационе, так как они превращаются друг в друга или синтезируются из промежуточных продуктов углеводного или липидного обмена. Незаменимые аминокислоты не синтезируются в организме и должны поступать с пищей. К ним относятся 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин+цистин, треонин, триптофан, фенилаланин+тирозин. К частично заменимым относятся аргинин и гистидин, так как в организме они синтезируются довольно медленно.

    При дефиците хотя бы одной из названных аминокислот в пище, возникает отрицательный азотистый баланс, происходит нарушение обмена веществ, нарушение деятельности центральной нервной системы, остановка роста и тяжелые клинические последствия типа авитаминоза. Поэтому белок пищи должен быть сбалансирован по составу незаменимых аминокислот, а также по их соотношению с заменимыми аминокислотами, в противном случае часть незаменимых аминокислот будет расходоваться не по назначению. К настоящему времени разработано большое число методов определения биологической ценности белков, включающих биологические (в том числе и микробиологические) исследования и химический анализ.

    Под биологической ценностью понимают степень задержки азота в теле растущего организма или эффективность его утилизации для поддержания азотистого равновесия у взрослых, которая зависит от аминокислотного состава белка и его структурных особенностей.

    В настоящее время все исследователи пришли к единому мнению о том, что биологическую ценность белков, независимо от использованного варианта проведения эксперимента или метода ее расчета, необходимо выражать не в абсолютных, а в относительных величинах (в процентах), т.е. в сравнении с аналогичными показателями, полученными с применением стандартных белков, в качестве которых приняты белок цельного куриного яйца или белки коровьего молока. В связи с этим наиболее широко используется метод Х. Митчелла и Р. Блока (Mitchel, Block, 1946), в соответствии с которым рассчитывается показатель аминокислотного скора , позволяющий выявить так называемые лимитирующие незаменимые аминокислоты.



    Скор выражают в процентах или безразмерной величиной, представляющей собой отношение содержания незаменимой аминокислоты в исследуемом белке к ее количеству в эталонном белке. Расчет аминокислотного скора (А.С., %) производят по формуле

    Аминокислотный состав эталонного белка сбалансирован и идеально соответствует потребностям организма человека в каждой незаменимой аминокислоте, поэтому его еще называют «идеальным». В 1973 г. в докладе ФАО/ВОЗ * опубликованы данные по содержанию каждой аминокислоты в эталонном белке. В 1985 г они были уточнены в связи с накоплением новых знаний об оптимальном рационе человека.

    Все аминокислоты, скор которых составляет менее 100%, считаются лимитирующими, а аминокислота с наименьшим скором является главной лимитирующей аминокислотой. Следующими по степени дефицита будут вторая, третья, четвертая (и т.д.) лимитирующие аминокислоты.

    Наглядно показатель биологической ценности можно изобразить в виде самой низкой доски бочки Либиха на примере белков пшеницы (рис. 1). Полная емкость бочки соответствует «идеальному» белку, а высота доски лизина – биологической ценности пшеничного белка.

    Рис. 1 Бочка Либиха

    При сравнении величин биологической ценности белков, определенных методом аминокислотного скора, качество белков выявляется недостаточно, поскольку этот метод не учитывает степень доступности аминокислот для организма. Для выявления степени доступности для организма аминокислот, особенно после воздействия различного вида технологических процессов обработки пищевых продуктов, предложены биологические методы с использованием микроорганизмов и животных.

    Биологическая ценность белков определяется также степенью их усвоения после переваривания. Тепловая обработка, разваривание, протирание и измельчение ускоряет переваривание белка, тогда как длительный нагрев при высоких температурах затрудняет его. Кроме того, животные белки имеют более высокую усвояемость (более 90%), чем растительные (60-80%).

    Таким образом, анализируя литературные данные можно заключить следующее:

    – в большинстве производств при соблюдении технологических режимов деструкции аминокислот практически не происходит;

    – биологическая ценность белков, особенно растительного происхождения, при умеренном нагревании в некоторых случаях повышается, но всегда снижается при интенсивной термической обработке;

    – термическое повреждение белка может биологически не выявляться, если аминокислота в недоступной форме не является лимитирующей;

    – наличие редуцирующих сахаров и самоокисленного жира, а также активных альдегидов (госсипола, формальдегида) повышает степень термического повреждения белка;

    – степень термического повреждения прямо пропорциональна времени воздействия.

    При составлении сбалансированных рационов питания необходимо учитывать биологическую ценность белков и принцип взаимного дополнения лимитирующих аминокислот (сочетание белков растительного происхождения с животными белками).

    Поделиться